Evidence of an association between cardiac-locomotor synchronization and lower leg muscle blood perfusion during walking
نویسندگان
چکیده
[Purpose] The purpose of this study was to investigate whether the occurrence of cardiac-locomotor synchronization (CLS) improves lower leg muscle blood perfusion during walking. [Subjects and Methods] Eleven healthy men were studied while performing two treadmill protocols. The CLS protocol involved subjects walking at the frequency of their heart rate (HR) to induce CLS. The free protocol (reference) involved subjects walking at a self-selected cadence. The treadmill load was identical in the two protocols. Electrocardiographic signals for HR, foot switch signals for step rate and near-infrared spectroscopy (NIRS) signals for total haemoglobin (total Hb) in the lower leg muscles were measured continuously for 10 min after HR reached a steady state. [Results] The mean HR and mean step rate did not differ between the CLS and free protocols. However, total Hb was significantly higher in the CLS protocol than in the free protocol. The rate of increase in total Hb positively correlated with the strength of CLS. [Conclusion] These results suggest that the occurrence of CLS enhances lower leg muscle blood perfusion by increasing the strength of CLS during walking.
منابع مشابه
Intramuscular pressure-induced inhibition of cardiac contraction: implications for cardiac-locomotor synchronization.
The synchronization of cardiac and locomotor rhythms has been suggested to enhance the efficiency of arterial delivery to active muscles during rhythmic exercise, but direct evidence showing such a functional role has not been provided. In this study, we tested the hypothesis that the heartbeat is coupled with intramuscular pressure (IMP) changes so as to time the delivery of blood through peri...
متن کاملWhole body hyperthermia, but not skin hyperthermia, accelerates brain and locomotor limb circulatory strain and impairs exercise capacity in humans
Cardiovascular strain and hyperthermia are thought to be important factors limiting exercise capacity in heat-stressed humans, however, the contribution of elevations in skin (Tsk) versus whole body temperatures on exercise capacity has not been characterized. To ascertain their relationships with exercise capacity, blood temperature (TB), oxygen uptake (V̇O2), brain perfusion (MCA Vmean), locom...
متن کاملEffects of respiratory muscle unloading on leg muscle oxygenation and blood volume during high-intensity exercise in chronic heart failure.
Blood flow requirements of the respiratory muscles (RM) increase markedly during exercise in chronic heart failure (CHF). We reasoned that if the RM could subtract a fraction of the limited cardiac output (QT) from the peripheral muscles, RM unloading would improve locomotor muscle perfusion. Nine patients with CHF (left ventricle ejection fraction = 26 +/- 7%) undertook constant-work rate test...
متن کاملChanges in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury.
In human spinal cord injury, the neuronal mechanisms mediating the improvement of locomotor function in response to intensive treadmill training are not well understood. In this study, we examined if such recovery is mediated, in part, by increases in residual corticospinal drive to muscles of the leg during walking. To do this, we measured the coherence of electromyogram (EMG) activity between...
متن کاملRespiratory muscle work compromises leg blood flow during maximal exercise.
We hypothesized that during exercise at maximal O2 consumption (VO2max), high demand for respiratory muscle blood flow (Q) would elicit locomotor muscle vasoconstriction and compromise limb Q. Seven male cyclists (VO2max 64 +/- 6 ml.kg-1.min-1) each completed 14 exercise bouts of 2.5-min duration at VO2max on a cycle ergometer during two testing sessions. Inspiratory muscle work was either 1) r...
متن کامل